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Abstract

4

Several proposed routing algorithms for store and forward communication
networks, including one currently in operation in the ARPANET, route
messages along shortest paths computed by using some set of link lengths.
When these lengths depend on current traffic conditions as they must in an
adaptive algorithm, dynamic behavior questions such as stability, convergence,
and speed of convergence are of interest. This paper is the first attempt
to analyze systematically these issues. It is shown that minimum queuing
delay path algorithms tend to exhibit violent oscillatory behavior in the
absence of a damping mechanism. The oscillations can be damped by means
of several types of schemes two of which are analyzed in this paper. 1In
the first scheme a constant bias is added to the queuing delay thereby
providing a preference towards paths with small number of links. In the
second scheme the effects of several past routings are averaged as for
example when the link lengths are computed and communicated asynchronously

throughout the network.
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1. Introduction

A central operational problem of a communication network involves the
choice of routes used by messages to travel from orijin to destination. It
is possible, of course, to choose a fixed route for each origin-destination
pair, but this precludes the possibility of adjusting routes to alleviate

congestion due to variations in average traffic conditions. For this

reason attention has focused on adaptive routiug strategies
whereby congestion in the network is continuously monitored and routes between
origin-destination pairs are modified in real time so as to keep average
delay per message at a reasonable level. A routing scheme of this type was
implemented in the ARPANET in 1969 and attracted considerable attention.
The main idea in this scheme is to compute in real time an estimate of the
minimum average delay per message for each origin-destination pair and to
route messages along the current minimum estimated delay path. When this
scheme was first implemented, it was noticed that it is -
prone to severe oscillations. This behaviour is due to the fact that
delay estimates used to choose routes are themselves affected by the route
choice with a feedback effect resulting. To remedy this situation it was
decided on heuristic grounds to introduce an additive factor, called bias,
to the estimated delay of each link, thereby building into the algorithm
a preference towards paths with small number of hops to the destination
{51 - [7]. This had a stabilizing effect albeit at the expense of considerable
loss of sensitivity to traffic congestion.

The implementation of the minimum delay path idea in the original
ARPANET algorithm had a number of flaws allowing, for example, the formation

of loops. For thi; reason alternative schemes based on the same idea were




studied, and a new algorithm called SPF has been developed and imple-

mented [1], [4), [11]. The present paper is an outgrowth of the

author's participation in the design study of this algorithm during the summer
of 1978 at BBN, Inc. However, our analysis does not focus on the ARPANET

and the SPF algorithm in particular, but rather is geared towards understanding
the effect of feedback and the nature of the dynamic behaviour of shortest
path algorithms where link lengths depend on current traffic conditions.

We note that the algorithms of this paper are far from optimal since they

are single path algorithms in the sense that at any given time there is only
one path per origin-destination pair along which messages can travel. Better
performance can be achieved by allowing multiple paths as for example in the
optimization algorithm of Gallager [9) or its second derivative versions [2].
On the other hand the hardware limitations of some of the presently existing
networks including the ARPANET preclude the use of such more sophisticated
algorithms. Furthermore, we feel that the mere fact that the algorithm has
been successfully implemented in a network as interesting and influential

as the ARPANET makes it worthy of analysis and investigation. This is
reinforced by the fact that the behavior exhibited by the algorithm is

quite interesting and can :; ,se nontrivial design problems.

The paper is organized as follows:

In Section 2 we provide a deterministic finite state Markov chain
framework for studying a simple version of the algorithm. We show that for
ring networks the algorithm may tend to oscillate between poor routing paths
and become itself a major contributor to congestion. We also demonstrate

how the use of a bias factor can provide a mechanism for damping oscillations

as confirmed by experience with the original ARPANET algorithm.




The finite state model does not lend itself to analysis of more sophisticated
routing schemes and more general network topologies. We consequently introduce

in Section 3 a model of a ring network with a continuum of nodes and a single

destination. This allows us to employ techniques of stability analysis of
discrete-time systems with continuous state space, and enables us to further
quantify the relationship between choice of link lengths and algorithmic
behavior.

The analysis of Section 3 focuses primarily on the effect of using a
bias factor as a damping mechanism. In Section 4 we show that oscillations
can also be damped effectively by making the link lengths dependent on
several preceding routing paths via some averaging mechanism such as a fading
memory scheme or asynchronous link length updating. To our knowledge the
fact that averaging can provide a damping mechanism in a shortest path algorithm
has not been noticed earlier and in fact when we originally approached this
problem at BBN, Inc. there was considerable concern regarding its effect on
algorithmic behavior. It is now believed that the significant degree of
averaging inherently present in the SPF algorithm is in large measure responsible
for the stable dynamic behavior observed in experiments conducted thus far
(11].

The analysis of Sections 2-4 focuses on ring networks. The ring
topology is central for the extension of our earlier results to more complex
network topologies. This extension is carried out in Section 5 under the
assumption that an equilibrium routing exists. However, by contrast with '
ring networks, an equilibrium routing need not always exist for more complex
topologies. We demonstrate via example the mechanism by which such a
phenomenon can occur.

The results and analysis of the present paper can be generalized to

the case where there are morc than one destinations. This analysis is




straightforward but considerably more complex technically and may be found in
The continuous node model of Sections 3-5 may be criticized on the grounds
that it is unrealistic. On the other hand it is very difficult to provide an
extensive analysis of a more realistic finite node network model. In particular,
it appears impossible to demonstrate the effect of averaging in such a context.

Furthermore we believe that the realism of any algorithmic model must be judged

on the basis of the validity of the conclusions it provides regarding the
behavior of the related practical algorithm. These conclusions in our case
have been verified by extenszive numerical experiments with finite node net-
works [4], [3]. 1In particular the validity of our qualitative results
regarding the role of a bias factor and averaging as damping mechanisms

have been amply demonstrated.

2. A Finite State Markov Chain Model

Consider a communication network with nodes denoted by 1,2,...,N and
diracted links denoted by (i,%) where i is the head node and £ is the tail
node. We consider the following algorithm for periodically updating paths
for routing messages.

(A) At the beginning of every time period a nonegative length Dik of
every link (i,%) becomes availabe to each node. Based on these lengths each
node computes a shortest path to each destination and routes messages over
that path during the period.

The standing assumption for algorithm (A) is that the lengths Dil used
in computation of a new shortest path depend exclusively on one or more

preceding shortest paths. This dependence is deterministic via a rule that

for the moment we leave unspecified. As an example DiR may represent some

13].




measure of average delay per message on link {(i,L) during one or more preceding
periods perhaps with an added bias factor -a scheme currently implemented in
the ARPANET [1], [11]. By assuming that the dependence of Dil on previous

shortest paths is deterministic we also implicitly assume that the input traffic

originating at each node is a stationary stochastic process whose ensemble para-

meters can be adequately measured by time averages. This assumption is not

valid, of course, in practice but is a reasonable approximation to the situation

where the time constant of traffic statistic variations is large relative to

the shortest path updating period (a quasistatic assumption, cf. [9]).
Consider first algorithm (A) applied to a given network for the case where

the lengths Dil depend exclusively on the preceding shortest path. Assume

also that the shortest path algorithm has a fixed rule for breaking ties

between equidistant paths. Then each shortest path uniguely determines the

next shortest path. There is a finite number of possible shortest paths

(also referred to as routings) which we denote by Rl' R2,....,R“ where M

is some integer. To any initial routing say Ri , there corresponds a

unique sequence of subsequent routings Ril, Riz?... Thus eventually some

routing will be repeated (say Ri = Ri ), and once this happens the routing
k k+n
sequence will become periodic. Thus starting at Ri the algorithm will
o
eventually end up cycling through R, ""Ri . Of course it is possible
*k k+n-1
that Ri itself is part of the cycle (k=0), and that the cycle consists of
o

a single routing (n=1) in which case the algorithm stabilizes at that
routing.
The model just described is one of a deterministric finite state Markov

chain with states Rl""RM’ From Markov chain theory or by elementary

reasoning it follows that the set of all routings {Rl,...,RM} can be parti-




tioned into a collection of cycles (or ergodic classes), and a collection of
transient routings. If the initial routing is transient it is never repeated
by the algorithm, and if it is part of a cycle the algorithm returns to it
periodically. More than one cycles may exist. Furthermore, each transient
routing leads to a unique cycle.

When the lengths Dil depend on a fixed number (say m) of preceding routings,
a finite state model for the algorithm can be similarly constructed whereby
the state space of the model is the set of all m-tuples of routings. Similarly
the state space can be partitioned into cycles and transient states. Analysis
of such a model is naturally more difficult in view of the increased size
of the state space, and this is more so if Dil depends on all preceding
routings in which case a countable state Markov chain model is necessary.

In what follows in this section we will restrict attention to the case

of a ring network with N nodes shown in Figure 1. Node N is the only

destination and all links are bidirectional. By reversing the directions
of flow and the role of origina and destinations the subsequent model can
be converted to one with a single origin and many destinations. The

traffic input originating

fi-l i Tfie




at node i and destined for N is denoted by r,. The routing Ri , 1=1,..,,N
is the one for which all nodes j < i route their traffic in the clockwise

direction and all nodes j 2_i route their traffic in the counterclockwise

direction

ROUTING R;

Figure 2

as shown in Figure 2. Given a routing Ri’ the flows on each undirected
link (j-1,3) in the clockwise and counterclockwise direction are denoted

by f;(i) and f;(i) respectively and are given by

0 if 1%
f}(t) =

g tri,t- -lhr:_1 if j<1i

s ri+ri+l+...+rj_1 if 1 <
fj(i) -

e e g




We will consider the case where the length DiR of a link (i,%) is given

by an equation of the form

(1) Dig = d(fiQ)

where fil is the flow on link(i,%) during the preceding period and

d is a real valued, continuously differentiable and monotonically
increasing function qf flow with d4(0) > 0. For simplicity we assume that

the function 4 is the same for all links but this does not affect materially
the analysis that follows. Since the flow fil depends only on the preceding
routing the same is true for the length DiQ . It appears that this simplest
of all possible situations is the only one that can be analyzed effectively
in a finite node network context. The practical situation where Di2 is

taken to be the average time delay for a message to traverse link (i,%) can

be reasonably modelled by a function d of the form

(2) dlfjg) = Pyg * Typ * Qielfyp)

where
P., = Average Processing plus propagation delay per message
Til = Average transmission delay per message

Qil(fil) = Average queuing delay per message when the average

flow on link (i,&) is fil .

The quantities Pi% and Tig are independent of the flow fil while the
dependence of Qil on fil is determined by the statistics of the traffic
arriving at i and routed through f. If these statistics can be adequately
modelled by an M/M/1 queue then Qil takes the form [6], [7]

£

S JU S
i% Cie = fig

(3)
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where Ci is the transmission capacity of link (i,%). We mention, however,

L
that on the basis of experiments conducted thus far it is unclear whether
the average delay per message in the ARPANET can iundeed by modelled as in
(2). This may be due to peculiarities of the ARPANET hardware which are
little understood at present. We now define the shortest path algorithm

. . . . P + .. . .
Given a routing Ri we define the distances D (i,j), D (i,j) of node j to

the destination in the counterclockwise and clockwise directions respectively

by
- 3 -
D (i,3) = I dIfy(i)]
2=1
N
D (i,j) = I d[f;(i)]-
£=j+1

If D-(i,i) = D+(i,i) then the algorithm sets the next routing to Ri- If

D (i,i) # D'(i,i) the algorithm sets the next routing to R where the node n

is such that

D (i,j) > D'(i,j)  for j > n

D (i,3) < D' (i,3) for j < n .
It can be easily shown that if D (i,i) # D+(i,i) the next routing Rn is
uniquely determined by the relations above. Given an initial routing RO
we consider the sequence of successive routings Rl, R2,...Rk, Rk+l,...,
generated by the algorithm.

The quantity 4(0) may be viewed as a bias factor. It represents link
length at zero flow. The following proposition shows that if 4(0) = 0 and
1

the first two routings are different, i.e. R0 # R then the algorithm ends

up oscillating between the two extreme routings R, and RN which is the worst

1
possible behavior that can occur. In the context of (2) the case d(0) = 0
corresponds to the situation where the processing and transmission delays

PiQ and TiQ are negligible relative to the queuing delay Qil'
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Proposition 1: Let d(0) =0 and assume that RofRI. Then there exists an

index K such that for all k2Kk either R* =R, and Rk+l=R.N or Rk=RN and

1
k+1
R =R1.

Proof: Let R, be a routing and assume that the routing subsequent to Ri is
Rn withn #i. For concreteness assume that n< i, We will show that either
i = N or else the routing subsequent to Rn is Rj with j>1i.

I1f i #N then since Rn is the routing subsequent to Ri we have

(4) D (i,n-1) < pt(i,n-1) = pt(4,1).
We also have
(5) pt(i,i) s ot (n,1),
(6) D (n,i) S D (i,n-1).
From (4) - (6) we have
D (n,i) = pt(1,i) > D (i,n-1) = D (n,i)
so finally
p'(n,1) > D (n,i).

It follows that in the routing Rj which is subsequent to Rn, node i will

switch his traffic to the clockwise direction so that j > i.
We can show using a very similar argument that if n > i then

either 1 =1 or else the routing subsequent to Rn is R, with j < 1.

3
Thus we have that the number of nodes that lie between two
successive routings is increasing at each iteration if none of these

routings is R; or Ry. On the other hand if the current routing is R, or

RN then the next routing will clearly be RN or R1 respectively. This proves

T e 7 T e e -
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the proposition. Q.E.D.

0 1

Notice that, if d(0) =0, the situation R =R can only occur if

b"(1,1) =b¥(1,1) where i is the node for which R’ =R . Thus if we add any
0 1

€> 0 to any one of the node inputs we will have R #R" and the algorithm

will again end up oscillating between R1 and RN' We provide an example

illustrating the result of Proposition 1. Several additional examples
involving more general topologies and multiple destinations may be found

in [4].

Example: Consider a 16-node ring network where node 16 is the destination.

Letz&.= l fori=1,...,7,9,...,15 and r_ = € > 0. If € = 0 and the initial

8

routing is R8 then by symmetry all subsequent routings equal RB' If €

is very small but positive then for the case where
d(f) = £

the sequence of generated routings is R8' RlO' R3, RIG' Rl' R16' 1
This fact can be verified via a straightforward calculation in Figure 3

which shows the flow patterns corresponding to successive routings.

We now turn our attention to various notions of equilibria and
stability. We say that Ri is an equilibrium routing if

D (i,i-1) < D'(i,i-1), and D' (i,1i) < D7(i,i).
It follows from this definition that Ri is an equilibrium routing if and
only if it repeats itself via the shortest path algorithm.

We say that a node i is an equilibrium node if

D (i,i) < D'(i,i), and DY(i+l,i) < D (i+l,1) .
In words a node i is an equilibrium node if he switches his traffic in

both cases where the routing is Ri and Ri+1'

Bt O VISt FREUIRA
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We say that an equilibrium routing Ri is locally stable if routing

Ri+1 generates either Ri or Ri- through the algorithm, and routing Ri-

1 1

generates either Ri or Ri+ We say that an equilibrium node i is locally

1

stable if routing Ri generates Ri+ via the algorithm, and routing Ri-

1 1

generates Ri' The definition of local stability is based on the idea that

when the algorithm starts “close enough to equilibrium” it should not lead to

a "growing" oscillation. The following proposition complements Proposition 1
and suggests that the bias level d(0) should exceed a certain positive value in

order for an equilibrium routing or node to be locally stable.

Proposition 2: a) An equilibrium routing Ri is locally stable if

ri N-1 « r, N-1 -~

d(0) > max { 3 I me s 3 I my }

=1 =1

#i L#i-1

where

m, = max{d'"(£)|f (i-1) < £ < £ ()} , for 2 =1,...,i-1
~ \ + . + . .
my = max{d' (£)|f, (1) < £ < £, (i-1)} for & = i+l,...,N-1
m, = max{a' (£) |£, (i) < £ < £ (i+1)} for & = 1,...,i-2
- + . + .
mg = max[d'(f)|f2+l(1+1) < £ < fl*l(l)} for £= i,...,N-1

where 4' (f) denotes the first derivative of 4 at f.

b) An equilibrium node i locally stable if

r, N-1 _
d(0)> >— I m
=2 gt
where
m, = max{a'(£) [£,(i) < £ < £y(i+D)} for & =1,...,i
m, = max{d' (£) |£3(i+1) < £ < £3(5)) for & = i+1,...,N-1.
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The proof of Proposition 2 involves a straightforward but lengthy
argument and will be ommitted. It can be found in [4].

Proposition 2 implies that in order to ensure local stability the bias
d(0) should exceed a level that depends strongly on the traffic conditions.
This level is proportional to the input at or near the equilibrium and to a
global measure of the derivative d' along the ring. Thus it may be necessary
to choose a value of d(0) which is large relative to r and d4' in order to
ensure stability for a broad range of input traffic conditions. This can be
accomplished by adding a large constant to d. On the other hand this would
introduce a tendency in the algorithm to generate routings close to the min-
hop routing (i.e. one that selects routes according to minimum number of links
to the destination). As a result the algorithm would tend to be insensitive
to congestion. This tradeoff will be reencountered in the next section

The point of view that has been adopted in this section is one whereby

the algorithm is viewed as a dynamic system with a finite number of states
(the finite collection of possible routings). Unfortunately the study of
dynamic behavior and stability properties of such systems is notoriously
difficult. To begin with there is no accepted definition of equilibrium, and
in fact we saw that in the ring network context there are two types of
"equilibria" that are of interest - equilibrium routings and equilibrium nodes.
Furthermore there are no established methodological tools that can be helpful
in a finite state system framework. As a result our progress has been limited
to the results just discussed. We are thus motivated to consider approximation
of the discrete system with a continuous system having a continuum of states.
For such systems there is an effective and well developed stability theory
that can be utilized for analysis. We take this approach in the following

two sections where we introduce a network with a continuum of nodes. Despite




——————————
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the radical nature of thisstep the analysis provides informative results

and clarifies the role of averaging the effects of several past routings as

a means of damping oscillatory behavior. The validitv of our approach is supported
by the fact that gqualitative conclusions drawn from the continuous node model

1 have been verifiec computationally in finite node models.

3. A Continuous Model of a Ring Network

We consider a continuum of nodes arranged in a ring and sending traffic

to a single destination as shown in Figure 4.

Figure 4

Pointson the ring are identified with their distance t from the destination
in the counterclockwise direction, where t is normalized to take values in
the interval [0,1]. Traffic can move on the ring in both directions.

| For every t in [0,1] we denote by r(t) the input density at t. The

meaning of the function r is that for any subinterval [tl'tzl of [0,1] the

total input traffic originating at nodes in [tl,tzl is




t
.r 2t(t)dt

Y

We assume that r is continuous on [0,1] and r(t) > O for at least on tg (0,1)

Note that a network with a finite number of nodes can be modelled by a function

r containing impulses and such a function can be approximated by a continuous
function consisting of narrow triangular pulses of finite height. We are interested
in routings specified by points y in [0,1], where the flow splits, i.e.points
larger than y send their flow counterclockwise (or in the positive direction) and
points smaller than y send their flow clockwise (or in the negative direction ).

To a given function r and routing y, there corresponds at every point t a flow

I3 : 3 2 + -
in the positive direction f (y,t), and a flow in the negative f (y,t) given by

( t
J’y r(T)dT if <t

o=

j: r(T)dr if f

In order to introduce an algorithm such as (A) in the framework of

the continuous model we consider a function d mapping flows into the non-
negative real numbers. The meaning of 4 is that given a routing y and any

. - +
point t, the distances D and D from t to the destination in the negative

and positive direction are given by

t
9y D (y,t) = [ d[£ (y,T)]d"
0

1
a0 'ty,0) = [ alf* M.
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1 We will assume that 4 is a monotonically increasing function of £ with every-
where continuous derivative. We further assume that d(0) > 0. As Proposition 1
shows, the case where 4(0) = 0 is not interesting from a practical point of
view.

We consider the following algorithm for generating routing sequences
{Yk}:

(Al) Given a routing Yy the next routing Vel is the solution of

the equation

- +
(11) D (yk.yk+1) =D (Yk'yk+1) .

It will be shown as part of Proposition 3 that equation (11) has a

unique solution for every ykE[O,ll. Note that since we have
D (y,,t) < D (Y ,¥,,4) = Dy, .y,,,) < D'y, ,t) if t<y
k' = k' Tk+1 k' Y+’ = 7 Wk’ - Yx41
and
D (y.,t) >D ( ) =D'{ y > bty ,t) if t >
ykl el Yk:Yk+1 = YkrYk+1 - ykl — YK+1
it follows that a routing Yie1 determined from (11) is such that every point t

routes its flow in the positive or negative direction according as

Dﬂ&m)szwuorfwwninnnmLi@.mmMMQmmmmmdunme

to the destination.
We say that y* €[0,1) is an equilibrium if

(12) D (y*,y*) = DYy*,y*) .

We first show some preliminary results relating to existence and

optimality properties of equilibria:

Proposition 3: There exists a unique equilibrium y* € (0,1). Furthermore

equation (l1) has a unique solution Yis1 for every Yy
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Proof: Using (9) and (10) we have for all y and t

- +
: (13) DLLE) g5 (y,0], B8 - qrrty,0).

We have d(0) ?0 and d is monotonically increasing,so QQ:%%;E).> 0 and
gg:é%*gl < 0. Thus for fixed y, the function D (y,*) is continuous,
monotonically increasing and satisfies D-(y,0)==0, while the function
D+(y,-) is continuous monotonically decreasing and satisfies D+(y,1)==0.
Hence the equation D (y,t) =D+(y,t) has a unique solution in t lying within
(0,1). Denote by g(y) the solution corresponding to y. The function
8:[0,1][0,1]) can be easily shown to be continuous and, by Brower's fixed
point theorem ([8], p. 16l), g has a fixed point y*. This y* is an
equilibrium. 1f there exist two equilibria y: and y; with y: < y*z, then

since d(f)> 0 for all f> 0, we must have
- % % - % * -k K + * %
< < =
D (y1,¥)) =D (y5¥,) 2D (y,,¥,) =D (y,,¥,)

4+ * % + * % 4+ % % - % %
D (¥,5¥3) <D (y,,¥,) D (y,,¥,) =D (y,,¥,)

which is impossible. Hence the equilibrium is unique. ©Q.E.D.

Proposition 4: The equilibrium minimizes over all y € [0,1] the expression

1 1
Jy) =fp[f*(y,mdt +fplf'(y,t)1dt
0 [0}

where p is any function satisfying for all f

(14) p'(f) = d(f)

and p' denotes the first derivative of p.

Proof: The first derivative J'(y) of J is given by

] R 1 -

' + Of (y,t) - of (y,t)
15 Jly) = SLE (y,t) ) SR YR gy S (y,ty) Xt g
(15) y l:; If (y,t)]) ¥ +J;1 If (y,t)) 3y t
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It can be seen from (7) and (8) that

af+ ¢ -r(y) if y<t
(16) =
y 0 if t<y
- [ 0 if y<t
(17) .a.f_s(ylaﬁl =
r(y) if t<y.

Combining equations (14) - (17) we obtain

T =r - LA, 0lde+ [T A, 01de ],

or equivalently

J'(Y) =r(y)[D (y,y) - D+(y,y)] .

*
If y is an equilibrium it can be seenthat we have

- + *
D (y,y) SD (y,y) if y Sy

- + *
D (y,y) 2D (y,y) if y2vy.

Thus J'(y) <0 if y <y*, J'(y) 20 if y* <y, and J'(y*) = O.
It follows that y* minimizes J. Q.E.D.

Proposition 4 shows that one can minimize the integral of
average delay over the ring by choosing the function d to be marginal
delay and by guaranteeing that the algorithm converges to an equilibrium.
The needto use marginal delays as link lengths in order to minimize total
average delay has been pointed out earlier in a different algorithmic
context [9]. The following discussion, however, casts doubt as to whether

the algorithm will converge to an equilibrium when the link lengths are
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chosen to be the marginal delays. In any case Proposition 4 suggests that
convergence of the algorithm to an equilibrium is desirable since a function
p satisfying (14) is monotonically increasing and convex and hence an
equilibrium will at least be a reasonably good routing even if it is sub-
optimal in terms of a particular design objective.

We now consider the convergence properties of the algorithm. For

any ye[0,1] we denote by g(y) the unique solution in t of the equation

D (y,t) = D+(y,t) (c.f.Proposition 1). Thus Algorithm (Al) can be written

(18) g(yk).

Y1

We have for all ye(0,1]
g (y) 1

(19) D [y,g(y)] =f dlf (y,t)ldt =f d[f+(y,t)ldt = D+[y,g(y)]
0 gly)

wWe evaluate the first derivative g'(y) = g%%XL for ye(0,1). Differentiation

in (19) yields
gly)
d' (£ (y,t)]at + alf (y,g(yMg’ (y)
0
1 + +
, = a'(f (y,t))dt - d[f (y,g(y))]lg'(y)
! gly)
. or 1 . gly) _
f f ar{fe (y,t)ldt -f ar(f (y,t)lat
(20) g'ly) = a °
alf (y,gly))] + dlf (y.gly)))]

] We have for t # y

+ +
Adlf (v, )] ., .+ f (y,t)
(21) 5y - d'lf (v, 0)) = =
] ddlf (y,8)) o, .- 3f (y.t)
(22) - alf (v, )] =gt ;
!
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Combining (20) - (22) with (16), (17) we obtain

min{y,g(y)}

- 1 +
r(y) [j(; aff (y,t)]dt + fmax{g,g(y)}d [f (y.t)ldt])

(23) g'ly) = - — "
alf (y,g(y))] + dlf (y,g(y))]

At the equilibrium y* we have y* = g(y*) and f (y*,y*) = f+(y*,y*) = 0, so

(23) yields

y* Lo,
riy*)( 0 a'f (y*,t)ldc +.£*dﬁf (y*,t)1dt

24(0)

(24) g'{y*) = -

By using a theorem of Ostrowski ({8], pp. 300~301) we can state the following

local convergence and rate of convergence result for algorithm (al).

Proposition 5: Let y* be the equilibrium. Then if |g'(y*)] <1 or

equivalently

* -
r(y*) [H) a' (£ (y*,t))dt + ;*d'[f+(y*,t)]dt]
2

(25) da(o) >

there exists an open interval I containing y* such that if Y0€I the sequence

{yk} generated by algorithm (Al) remains in I and converges to y*. Further-

more if Yy # y* for all k there holds

¥y v %
(26) lilln—”?up W = li}?—»oosuP lyk - Y*' = lgl (Y*)I .

When the equilibrium y* has the property specified in the first conclusion

of Proposition 5 we say that it is locally stable. If |g'(y*)[ > 1 then the

linearized system corresponding to yk+1 = g(yk) is unstable, so the
algorithm tends to diverge from y* when started close to it. Notice the
similarity of equation (25) with the corresponding local stability conditions

for finite node networks (cf. Proposition 2).
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A sufficient condition for global convergence of algorithm (Al)

can be obtained by requiring that g be a contraction mapping, i.e. for some

p€(0,1) there holds
* x
(27) le) -y |sely-y |, , Vy€[o,1].

From Taylor's theorem and the fact g'(y) < 0 we have

* Y
le) -y | = || 9" (2)az]
y*
Let
b =max 1 a' (£)
0Sf=) r(t)de
0

From (23) we obtain for all z

, Br(z)[1 - [z -g(z)]]
Ig (z)[ < 2d (0)

Thus (27) is satisfied if

e

’ |
J (I [1-)z-8(2) |14z
ﬁ Y (1 .
sup * 1
ye[o,l.l 24(0) v-y r'
y#y !
or equivalently if
PLr@il-lz-s@)| 1z
(28) d(0)>% sup | .
y€[0,1] y-y
*

yity
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This will be true in particular if
(29) a0 > &

where R=max r(t). The conclusions of the preceding discussion are
0=t=1
summarized in the following proposition.

Proposition 6: If condition (28) or the stronger condition (29) holds,

every sequence {yk} generated by algorithm (Al) converges to the equilibrium y*.

When the equilibrium y* has the property specified in Proposition 6 we

say that it is globally stable.

In order to put the results obtained thus far in better perspective

let us write d(f) as
d(f) = o + d(f)
where o = d(0) represents the bias factor. For fixed input density r we
have that to each positive value of bias o there corresponds an equilibrium
*
Yo ° The equilibrium is locally stable for o satisfying [cf. (25)])

’

*
* b - * 1 + *
rly )[JNO‘ a'[f (y ,t)ldt + ariet iy, ey1at]
(30) o > o o) 4 jy; o

2
and globally stable fora satisfying [cf.(29)]

(31) a > =

As O increases the corresponding equilibria tend to become stable. Further-
more from (24) and (?¢) it can be seen that the speed of convergence of the
algorithm is acceleratcd as o increases. On the other hand it is easy to see

*
that ya -+ % as 0, w~inich in the context of the routing problem means that




A‘q, ‘
— Y
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ok X

the algorithm becomes incrcasingly insensitive to congestion as Q*®

Since in a practical situation we are interested in the stability Properties

ot

of the algorithm for a broad range of inputs let us consider input densities

of the form

R A

-
B aad

(32) ry(t) = Ar (t)

ey

where A is a positive parameter. Then it is clear that as A increases a larger

VRS Y

value of bias is necessary in order to stabilize the algorithm.

For example if d is of the form “‘

(33) a(f) = a + Re”

where B>0, n>0 then from (3) and (31) we see that if r is changed to Ar

n,.__".‘___“,ﬂm_~*w.w
ediontidc

as in (32), then the stabiliiv threshold level of the bias is multiplied by W

Thus for fixed & and r there is a choice of A for which the corresponding
equilibrium is unstable. Incidentally the expression (33) for 4 has an -
interesting property, namely, that the set of all possible equlibria {y;la>0}
as well as the set of all locaily or globally stable equilibria is independent
of the level of input A and depends only on r. This is straightforward to
verify using (33) and the fact that if r is changed to Ar and o is changed

to Anu then the routing sequences generated by the algorithm are unaffected.

Choosing the Bias as a Function of the Current Routing

Since stability of the algorithm depends strongly on the level of bias

and the level of input we are motivated to consider schemes where the bias
is not held fixed but is rather adjusted adaptively on the basis of currently
available information. An interesting scheme is to use a length function

of the form
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Aoy = (y) +odit)

wiere & looa contisuously differentiable, monotonically increasing function
with d«®) - ¢, «nd w(y) is5 taken to be some monotonically nondecreasing

functico of D_vy) given by

BRI 1 .
Ll (v,)lae +f df (y,t)]dt.
w0 o]

SO oNdpie . T ol s Tunction of the form
{3a) iyl ooy 2oy) + ¥, D« )]2
N Sy ! A ‘e il
b [ . T ! 2 1 Y
At Lt . e cwe oxperimentally determined nonnegative constants
2 ! .

seens oavaitable. onothe context of a finite node network with not necessarily
4 ring structure @ sclicme like this can be very easily implemented. 1In this
¢ ase DP<Y) cun bo calculatcd as the sum of all reported link "delays"

“L. ... The bics w(y) can he computed by each node via a formula such as

A
~

(337 and t.e link lenginh can be computed as DiQ = 0(y) + d(fil)'

A schone of the tyne just described can be analyzed along similar lines
as eertior in this secticon. It has been tested in quite extensive numerical
cxperiment:. involving {inste node networks and it was shown to have very
satinfaciory perforrmance (47, [3]). This can be attributed to the fact that
rhe level of bias increasces or decreases with the level of input thus

piovicing eutomatic scaling with respect to input level. 1In fact it can be

~

fasily com thac if d has the form d(£) = Bf" where B>0, n>0 and we choose
w(y} - YD (v) where Y G, tien for every input density function of the form

Yofly, A0, the e oo generatad by the algorithm do not depend on A,

g -

'
1
[

e g e

——
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4. Averaging the Effect of Several Routings

In this section we show that the stability properties of the shortest
path algorithm of the preceding section can be improved if link lengths suitably
depend on flows corresponding to several past routings. There are several

possibilities along these lines. Some examples are as follows:

a) Averaging over the present and the past n routings.

Given a sequence of past routings YirYyp_qre--r we define for any

t in [0,1] "averaged" distances to 0 and 1 by

t n
A= 1 -
(35) I O I Iom I AE oy mler
5+ R
1
(36) C TN A SR Ny izo d{f+(yk—i'T)}dT

n
Thus distances are calculated by integrating ;%T iEod[f(yk_i,‘f)],which is

an averaged length over the routings Vi Yieen? in place of d[f(yk,T)]
which is the length corresponding to the last routing.

The new routing i+l is obtained from the equation

= at
(37) D (yk’yk_l)""yk_nsyk+l) =D (yk,yk_la'-':yk_n,yk+l)-

It is easily seen that this defines uniquely Yisl in terms of Yo Yk-1""**Yken®

As earlier we write the corresponding equation as
38) Va1l =8 Yoo oY)

*
A routing y 1is said to be an equilibrium if




* * 0x *
y = B(Y ,¥Y 5e:05Y ).

*
It is clear that y 1is an equilibrium in this sense for a given bias level

if and only if it is an equilibrium in the sense given in the preceding

section.

*
We can define local stability of y in the obvious way., We have

*
that y is locally stablie if it is also a stable equilibrium of equation

)

(38) linearized around yd (sce [8] p. 353). It is a known fact that this is

true if all roots of the characteristic polynomial

~ * * *

ookl 3y 3 o 9g(y ) n-1 ogly ) og(y )
Cp=p - 5 TP "3y Pty P-3

k k-1 k~n+1 Yk-n

lie inside the unit circle, (i.c. have modulus less than unity). We cal-

culate the derivatives %ﬁ——- .
Y1
We have for >0 similarly as carlier for every i
*
3 * r :':)- |4 1 .
== - S = 3 [ - * + i R .
Oy 2d (0) n+l Jo arfe (y*,t)ldt Jy* d'[f (y*,t)]dt}
Define
«
£$¥i2$ o 1 +
39 = ST VA A ! * .
(39) B 2d (0) JO (y*,t)]dt + Jy* aret (y*, ) 1at}

*
Note that, from Proposition 5, y is locally stable for algorithm (Al) if

p<1l. The characterist.c polynomial can be written as

ntl o poom b n-l p 0
(40) Cp) =p + n+1 + n+l P te.ot 1l P n+l °
We now use Lue tollowing fact:
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Lemma: Let E be a positive scalar and n be a positive integer. The roots of

the polynomial




—

n+l . n . n-1
P +.p +5p +...

+
o
g

ip+

lie inside the unit circle if and only if I <1,
Proof: This result can be shown by straightforward application of Jury's
stability test (f10], p. 97-98). Q.E.D.

We now apply the result of the lemma to our problem. We have

*
that the equilibrium y will be locally stable if J
B < n o+ 1.

It follows using (39) that in the averaged algorithm the bias level must

e % |
satisfy N y ) 1 DL
ryl T oatirmar nlde ¢ d I s ) de )
a() > 0 y
2 (n+1)
*
in order for the corresponding cquilibrium y to be stable. [f we compare

this with the earlier algorithm [cf. (25)] we see that in the averaged

algorithm the bias threshold level for stability is rceduced by the factor

EéT over the one of aljorithm (Al). TFor a given trattic input, and any

given bias level the corresponding equilibrium can be made stable by
averaging delays over a sufficicently large number of periods.
Regarding rate of convergence, Ostrowski's Theorem again applies,

We have from the proof of Th. 10.1.3 of [8] that given any - 20 there

S "+ . x
exists a norm ;' : on R L such that if Yy, ¢y for all

W

Ay Y -yw)
L 7 Teendl .
lim sup - k p k n+* ‘ S p(M,n) 4 ¢,
k (Y e YY)

where p (4,n) Ls the maximunm root modulus of the charactoeristic polynomial

C(p) of (40). It can be seen that for fixed n we have v(w,n) =0 as w0,
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. =t
1f pl,...,pn+llare the roots of C(p) we have lpl"'pn+1| =31 * S° that
B+l .
P(4,n) & (— Il) . It follows that for fixed u we have p(k,n) *1 as n=®,

so that the rate of convergence deteriorates as n ”®. Thus too much damp-

ing can slow down the speed of convergence of the algorithm.

b) Fading Memory Scheme

This scheme is similar to the preceding one except that the lengths

corresponding to all past routings are averaged via a fading memory scheme. Given
the sequence of all past routings {yk,yk_l....}, the next routing Yisl is

determined as the solution of the equation

R 1,
(41) J 6, (t)dt = j’ ¢ (tyat
A k
0 Tx+1
where 6; and 6: are obtained by the following recursive fading memory L

scheme with decay factor BE€[0,1)

B (t) = b () + (L-2)d [ (y,0)]
Sp(e) = BOL (O + (1- I (v, 0],

Alternatively we can write ]

koo
(42) () = (1-8) (I, 8 NIf (v, 0]

+ Ko kei, 4+ :
4y shw = a-s =z, 8 o,,00. ]

Let us write the solution of (46) as

(44) Vel = B Ypoqoees)- A |
Let us also consider the linear system obtained by formal linearization of . - A
(44) around the equilibrium y*. We have similarly as earlicr that this e
linearized system is

(45) Ygp = “HL-B)y, + By, | + ezyk_2 + .0,
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where p is given by (39 . Let us denote

Zedl SV PPV P E Y e

Then we have for all k
(49) Yiyp = -R(L-B)y, - B(L-B)Ez,

(47) z + sz

k+l - Yk

and it follows that the linearized system (45) is in effect the two-
dimensional system described by (46) and (47). This latter system is stable

if both eigenvalues of the system matrix

-W(l-8) -k(L - B)B

lie within the unit circle. These two eigenvalues can be calculated to be

0 and B-p(l-B). 1t follows that the linearized system is stable if

Although we do not provide a proof, it is possible to establish rigorously
that stability of the linearized system (45) implies local stability of

the algorithm (44) and thus we have the result that the threshold value of

bias for stability in the f: 1ing memory scheme is reduced by the factor

%1%E over the one of algorithm (Al). The optimal speed of convergence is

obtained when the eigenvalue g - p(l -8) equals zero in which case a super-

linear rate of convergence is obtained. This is so when ¢ =TEE . For other

. -1 .
values of & in the interval (%:ff, 1) the rate of convergence is linear, and
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for B<§E% the equilibrium is unstable. As § is increased from the optimal
value I%E towards unity the rate of convergence deteriorates.

¢) Asynchronous Length Reporting

This type of scheme is patterned after a shortest path routing algorithm
where nodes report asynchronously the lengths of their outgoing links and the
shortest paths are updated after each report. The set of nodes 0,1]) is

partitioned into n subsets which we call Sl’s Sn’ At some time, say O,

YRR
the nodes in S1 report their lengths averaged over the flows corresponding to
the preceding n routings and a routing update takes place. Then at time

01 > 0 the nodes in S2 do the same thing. Similarly, for i = 1,...,n-1, at

time (01 + 0, + ... + Oj) the nodes in Si+ do the same thing. At time

2 1

(01 + g, +...+gn) the nodes in S, again report their lengths, an updating

1
takes place and the process is repeated. This type of asynchronous operation
is currently in use in the ARPANET [4] where, in a finite node network
context, Si consists of a single node for all i. There are also other
variations of asynchronous operation inveolving for example averaging over

all preceding routings via a fading memory scheme. This type of algorithm

is described and tested computationally in [4] and [3]. The analysis of

all these schemes is very similar as that of the averaging schemes described
earlier in this section. The details are quite messy and may be found in
[4], where it is shown, via analysis and computational experiment, that
asynchronous operation has a substantial beneficial effect on the stability

properties of the shortcst path algorithm.

5. The Case of a Network with an Arbitrary Topology

The extension of the continuous model to the case of a network with

32
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arbitrary topology is quite straightforward. However, the notation required
for a precise mathematical description is very cumbersome and tends to cloud
the main ideas. For this reason our pr- sentation will be somewhat informal.
Consider the case of an undirected network with a single destination.
Let r be the input density function mapping points on the undirectred links
of the network to the nonnegative real numbers. The meaning of r again is
that, given any interval T on a link, the total traffic input originating
at this interval is the integral of r over T. We view the sct of points on
the network as a subset of a Euclidean space of appropriate dimension, and
assume that r is a continuous function. In order to consider notions of
length we associate with ecach undirected link (i,f) two directions i+{ and
2>i. (There may be more than one links connecting a pair of nodes within
our framework. When we refer to a link (i,%) we mean a particular link
connecting i and ¢ and specify further when there is danger of confusion).

A length function & is a function which assigns to each point on an undirected

link (i, %) two nonnegative numbers one associated with the direction 1+¥
and the other associated with the direction f+*i. We assume that & is plece-
wise continuous along every link in each direction. The meaning of § is
that given any two points on a link (i,%) their distance in the direction 1+f
is obtained by inteqgrating § as defined in that direction hetween the two
points. The distance in the opposite direction £+ is defined analogously.
Similarly we can consider paths between points on possibly different links
and define their length in one or the other direction.

We now associate to a given length function & a shortest path of every

that & is ceverywhere ponative,

point, and an asunciated routing,  We aosame

Given any point we conaader the collection of paths to the destination and

I Y S

—

'
b
1
'
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their associated distances specified by the function §. A path of minimum
distance is referred to as a shortest path from the point to the destination,
and the corresponding distance is referred to as the shortest distance of
the point to the destination. The routing corresponding to § is the set

of points for which there are more than one equidistant paths to the
destination. A routing is said to be regular if it dnes not contain any
nodes of the network, otherwise it is said to be singular.

Given the function § , a shortest path of each point and the corres-
ponding routing can be constructed in a simple manner along similar lines
as for usual networks. We first construct a shortest path tree for the
network in the usual manner by using as(directed) link lengths those speci-
fied by the length function §. (The length of the directed link (i,4) is
the integral of & along (i,£) in the direction i—4). This gives us a
shortest path and the associated shortest distance for every point on the
shortest path tree including all the nodes of the network. A shortest path
for points on links that are not part of the shortest path tree can be
obtained as follows:

Let (1,4) be a link that is not on the tree. Let D1 and Dy be
the shortest distances of nodes i and 4. The shortest distance of a point
t on (i,4) is

i 4

D(t) =min {Di+‘,t6“(‘f)dt,D£+‘,t61‘("’)dt}

where 6 15 6 in the direction £~ i and bil is & in the direction { - {¢.

L1
It can be seen that the routing corresponding to & is regular if and only
1f each (ordinary) node of the network has only one shortest path associated

with it. If a routing is regular then every one of its points lies in the
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"interior" of some link. Notice that the preceding construction shows that
a routing (regular or not) consists of (L - N + 1) points where L and N are
the number of undirected links and nodes respectively.

Given a shortest path tree and the corresponding routing constructed
as just described, we can define the flow corresponding to it. At each
point, say t, of a link (i,) there are two flows to consider {(one of which
is zero); the flow in the direction i+2 and the flow in the direction f{-i.
Each is defined in the natural way by integrating the input density function
r over the portion of the network that lies "upstream" from the point t,
i.e. over the set of points the shortest paths of which meet t on their way
to the destination. At the points of a regular routing the flow is zero in
either direction. ©Notice that if § is such that the corresponding routing
is regular the flow is uniquely determined by 6 . Otherwise the flow will
depend not only on § but also on the shortest path tree selected.

Suppose we are given a monotonically increasing, continuously
differentiable function d mapping flow into the positive numbers. Given a
shortest path tree T corresponding to a length function & with routing Y we
can define a new length function § which assigns to points t in any one of
the two possible directions the length &§(t) = d[f({t)] where f(t) is the
flow at t corresponding to & and T in the appropriate direction. The
corresponding routing is denoted Y. Note that if Y is singular then & and
Y depend not only on 4 but also on T. If Y is regular then Y is uniquely
determined by §

We are now in a position to define an algorithm similar to the one of

Section 3. Given a length function 60 and a corresponding shortest path
tree TO and routing Yo' the next length function is *1 - TU with corresponding
routing Y, = ?0. A chortest path tree T corresponding to ’.“1 is selected
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and is used to define similarly 62, Y2 and T2. Similarly the algorithm

generates Gk, Y, and Ty for all k.

We say that a routing Y* corresponding to a length function 6* and

shortest path tree T* is an equilibrium routing if

Contrary to the case of a ring network where
existence of an equilibrium, in general there need
This fact is demonstrated in the following example
of the complexity of the dynamic phenomena that we

Example: Consider the network shown in Figure 5.

Figure 5

5* = §* and Q* = Y*,

we were able to prove

not exist an equilibrium.
and provides an indication

are investigating.

There are two nodes 1 and 2 and three links connecting them denoted by

A,B,C. Node 2 is the destination. Points on A,B,

and C are parameterized

by their Euclidean distance to the destination. The Euclidean lengths of

A,B and C are all taken equal to unity. Let the input density function be

as follows




m

For link A: r(t) 1, VYc€[0,1]

r Yt€[0,1]

For link B: r(t) B’

Y

For link C: r(t) =r Ve€[o,1].

C)

We assume that ISrBsrC, l<rc. Let

d(f) =% + f
where @ >0 is the bias factor.

In view of the fact 1 < rB <r l<rC, it is clear that an equilibrium

CI
routing cannot contain a point in the interior of link A, while it must

contain a point in the interior of link C. We consider two cases:

Case 1: rg = 1. Then an equilibrium routing cannot contain a point in the

interior of link B so the only candidate for equilibrium are the two types

of singular routings shown in Figure 6. In routings Yl and Y2 the incoming

traffic at node 1 is routed through link A and link B respectively. None

of the two routings can be an equilibrium. In routing Y, there will be points

1
in the interior of link A which will have a shorter distance to the destination
(corresponding to Y,) through link B rather than through A, and the reverse
situation occures in routing Y2. Notice that this argument makes use only

of the magnitude of rB and r. and is independent of the form of the function d.

Case 2: 1<rB. Then it can be seen that the only candidates for equilibria

are routings of the form shown in Figure 7. Each equilibrium routing candidate

s
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is specified by the points Ype yce[O,l] where the flow separates on links B and
+ - . .
C. We have that the distances D (yB), D (yB) of Yy corresponding to routing

(yB,yc) along the counterclockwise and clockwise paths respectively are given
by

y
- AB
=Q ' -
D (yg) yB-rrB‘JO(yB t)de

1
D (yp) = (2 -yt (t-yy)de

4
1

{ '
+J0[rB(l yB)-+rC(1 yC)~+(l -t)lde
1f (yB,yc) is an equilibrium we must have
- +
D (yg) =D (yg)

which after some calculation can be written as

r -1

(48) 2(Q+rB)(1-yB)+rC(1-yc)=~j;—

By symmetry the equation D-(yc) =D+(yC) can be written as

r -1

(49) rp(l-yp) +2(@+1)(L-yp) ==

Equations (48) and (49) are in fact necessary and sufficient conditions for
(yB,yC) to be an equilibrium routing. Thus there exists an equilibrium
routing if and only if the solution (y;,yz) to these equations satisfies
y;€[0,1], yEE[o,l]. After some calculation, this condition can be shown to
be equivalent to 2

roQrg - £, - 1)
2(rp - 1)

(50) a2 -
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Routing Y2

Figure 6
Figure 7

Routing Y1
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If 2rB > r,, + 1 then for every level of bias there exists an equilibrium rout-

Cc

ing (yB, yc). If however 2rB < r_ + 1 then there exists an equilibrium only

C
for a above the threshold level indicated in (50).

The preceding example shows that existence of an equilibrium can depend
on both the level of bias and the input density function. Furthermore, it
may happen that, for a given input density function, no value of bias can be
found for which an equilibrium exists. This last phenomenon is of a singular
nature and is due to the fact that the Euclidean lengths of links A,B, and C
are all equal to unity. To see this consider the routing Y  corresponding
to the length function 6+(t) =1, § (t) = 1. The routing Y is analogous
to the min-hop routing in discrete node networks, and can be associated with
infinite level of bias. It is an equilibrium routing for the case d(f) = 1.
1f Y, is a regular routing, i.e. each node has a unique minimum Euclidean
distance path to the destination, then it is clear that, for any given input
function r, there exist; ; threshold level of bias & such that for all
& >0 a regular equilibrium routing exists.

Characterizing the dynamic behavior of the algorithm in the absence
of an equilibrium is certainly an interesting problem but we have been un-
able to make much progress in this direction. Computational results for
finite node networks given in [3] suggest that the stability properties of
the algorithm are improved by high level of bias and averaging similarly

as in the presence of an equilibrium. In what follows in this section we

restrict attention to the case where a regular equilibrium routing exists.

Given a regular equilibrium routing Y* = (yf,y;,...,y;} consider
for § =1,2,...,n the link (ij,lj) containing y; and the two shortest paths

from y; to the destination. A simple but fundamental observation is that

these two paths join at some point thereby forming a ring of the type con-
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sidered in Section 3. The zero point on this ring is the point where the two

*
paths join, Let ej be the Euclidean length of the ring containing Yj' For

j =1,2,...,n we parameterize points on the ring containing yf by the number in
[O,ej] going from smaller to larger numbers as we traverse the ring in a chosen
direction similarly as in the previous two sections. Thus points yj on

the link (ij,lj) can and will be identified by the number in [O,ej] specifying
their position on the ring corresponding to y;. It is easy to see now that
given Y*. any collection Y = {yl,yz,...,yn} such that yj lies in the interior
of (ij,lj) specifies a flow fY through each point in the network that follows
the (ordinary) shortest path tree corresponding to 6* and Y* and separates on
each link (ij,lj) in the two opposite directions at the point y.. This flow
defines a length function §Y via the relation 5Y(t) = d[fY(t)] in the direction
of the flow, and 6Y yields in the manner described earlier a shortest path
tree and a routing denoted by g(Y). It is easy to show (using the regularity
of Y*) that if Y is sufficiently close to Y* then the (ordinary) shortest path
tree corresponding to GY is the same as the one corresponding to Y* and that

the elements of the routing g(Y) lie on the links (ij,Qj).
The algorithm described earlier can now be redefined as

(51) Yy = 9y

*
The definition is local within a sufficientlv small neighborhood of Y and
*
is associated with the (ordinary) shortest path tree corresponding to Y
and the associated parameterization of the ring subnetworks containing the
links (i.,%.).
S

Similarly as in the preceding section we say that an equilibrium
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*
Y* is locally stable if there is a neighborhood of Y (defined in terms of

*

the parameterization of the rings associated with Y as discussed earlier),
such that the sequence {g(Yk;] generated by (50) is well defined and con-

*
verges to Y for every choice of Yo within this neighborhood.

' *
In order for Y to be locally stable it is sufficient that the
*
nxn matrix éﬁé%—l be defined and have all its eigenvalues within the unit
. o
og(Y )

circle. The computation of FT is straightforward along the lines
of Section 3. We first introduce some notation. For j=1,2,...,n
j] on the jth ring, and R;j’ej
denote the set of points t€[0,yj] on the same ring. Note that for every

let R; denote the set of points t€[y,,e
j’ej j

jsm=1,...,n the direction of flow on R+ and R+ (or R ) must
yj’ej ymsem ymsem
coinside if these sets have intersection with positive Lebesgue measure.

This implies that at least one of the sets R ngt and RV ngr
j’ej meem Yerj ymiem

is either empty or has lebesgue measure zero. Similarly at least one of

the sets R e AR e and R_ e r1R+' is either empty or has Lebesgue
Yj! j ymi m Yj’ j Ym’ m
measure zero. The equations defining g(Y) can be written as

. A= affe,ele, 1=,
R
e e
8y (¥),eq 8; (), i

By differentiation with respect to Yy, Ve obtain similarly as earlier at the

*
equilibrium Y

28,(0") ()

(51) S, TR

where
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L + *
(52) 6. =-f, a (e (v e lat

- %
- arif.(y ,t)ldt
% N R [ J( )]
:2€, ym:em

+ d'[f;(Y*,t)]dt

R * N R *
yj’ej Ym,em

aeh (', at
+j‘ [£50¢ .

- +
R_* N R *
yj’ej ymsem

and f;(Y*,t), f;(Y*,t) are the flows on the jth ring in the positive and
negative directions. In view of the preceding discussion, at least two of
the integrals in (52) are zero for every j and m.

Let R be the diagonal matrix having r(yj) as jth diagonal element,

and let © be the nxn matrix having as elements the scalars ejm' Then we have

*
dg (Y ) - 1
3Y 23(0) ok

We can show that the matrix @ is negative semidefinite. Indeed the matrix -0

is the Gram matrix associated with the functions

XR+* ] +(Y* ) ] = * .
., (t) 4 [f_) )] - XR-* (t) d [fj(y ,t)] ’ J = 1,-..,“,
13 ’ e, ]

. yJ J
where XS is the characteristic function of a set S (x (t) = 1 if tes, x(t) = O

otherwise). By using the fact that R is diagonal it can be shown that the eigenvalu

*
Ay, ,A_ of ég%%—’are real and nonpositive. Consider the spectral radius
17 A
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U = max {Illl,...,|kn|} .

*x
Then the equilibrium Y is locally stable for

(53) <1,

and hence there exists a threshold level for d(0) above which the corresponaing
equilibrium is stable. Similarly as in the preceding section, we can show
that if a fading memory scheme with decay factor 8 is used to average the

*
effects of past routings the equilibrium Y is locally stable if

(54) p<lil+B

and there is a value of B which optimizes the rate of convergence. 1t is

also possible to show that the other forms of averaging the c¢ffects of

several past routings improve the stability properties of the algorithm. %
For the purpose of aiding the reader in understanding the method of

|
* !
calculation of the matrix 32%%—1- we provide an example. y

Example: Consider the network shown in Figure 8 where node 4 is the L

. . * * * . i
destination, and assume that the regular routing {yl, Yo y3} shown in
an equilibrium. The figure shows also the chosen positive direction on

*
the ring corresponding to each Y;
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Figure 8

We calculate the symmetric matrix @ with elements ejm given by (52).
The interval between any two nodes i and £ is denoted [i,£]. The interval

* *
between some i and a node g is denoted [yi,ll. We have

6y = - . arref et de -f L a0 de
fy;»11V[1,3}U[3,4] [y,,4]
, . ]

62 = " ariey e, de - d'[fz(Y*rt)l dt

[v;,21U(2,3] [v5,1) U[1,3]

. + * R -

833 = - | "I (Y ,t3) de - |, d' L5 (Y )] ge
*

[y5,21V[2,3] U[3,4] [yq,4]
8y = - J d'[f{(y*,t)] dt

[1,3]

" ' +
83 = = J artr (v ,t)lde

(2,3]




= - j d'[f;(y*;t)]dt
(3,4]
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Abstract

This paper provides analysis and computational
results relating to the dyramic behavior of shorteat
path routingy alqgorithams for store and forward communi-~
cation networks. A companion paper {1} focuses on
networks with a single destinaticn. The present work
considers networks with multiple destinatiouns.

1. Introduction

This paper is a sequel to a companion paper |1}
which examinas the dynamic behavior of shortest path
routing algorithms for communication natworks w}th a
single destination. We examine here the case where
there are several destinations. Generally speaking,
the results obtained for single destiration network:
have extensions to the multiple destination case
although the analysis is considerably more complex.
Sinilarly a3 for single destination algorithms w3
find that the addition of a bias factor and the
presence of an averaging mechanism have a stabilizing
effect on dynamic behavior. Qur rasults also suggest
that the presence of multiple destinations has a
danping effect on the dynamic berhavior of the
algorithm. Similarly as in (1] we consider a network
podel with a continuum of nodes and rely on methods
of convergence analysis for discrete~time systems
with Euclidean state spaca, The possibilities for
extension of these results to finite pode networks
seem limited. However, 1t appears that conclus.ons
on algorithmic behavior drawn from analysis of the
continuous model remain at least qualitatively valid
for finite node networks. The conjecture is supported
by results of computational experiments provided in
Section 3. Throughout the paper we assume that the
reader 18 familiar with [1).

2. A Continuous Model of a Ring Network with
Multiple Des-inations

We consider a continuum of nodes arrangjed in a
ring and sending traffic to N points on the ring
referred to as the destinations. A polint is selected
on the ring ard is referred to As thas oriyin. Every
other point on the ring is {dentified with 1ts
Fuzlidean distance t from the orlgin in the counter-
clockwise direction, where t is normalize? to take
values in the interval (U,1). The destinatinng are
identified with their distances IR PYRERRE from
the origin. We asaume that

0 <x, < x, < ... Cx * 1.
-7 2 ]
Given any two distintt points tl' tl on the ring, the
+
interval R between t . and t_ in the <cunter-
tlllz i 2

clockwise direction {8 defined tn bn the cet

R ltl,«zl if tl<12
R
Y

e " (1
]
e, .11 Y ('),tzl LN

L.
Sal, 0l fosputer Science
18 1 Systems
e 24

Cimilaziy the inte:val P;l't; betaven tl and lz in the

clockw:se direction is cefined to be the set

(O,C‘l) (3} ['.2.1) if tl<t2

R .- 2)

ltz,tlj 12 £,

+ -
For ¢t = t_ we define P = R
1 2 tl.t2 tl,tz

tiotice that we have for all tl.tz €(0,1)

-(cl}-(tzl .

+ p
tx.tz tz.t] .

For eazn i = 1,...,N we a-e given a continuous function

r‘: {92,1} = {0,=) such that r1 {0) = riu). We refer to
r. ,i=},...,N, as the : *d_e__n_sity function (gr

_d_esnr.s:._anv_i_. The n}xanm:; of r, 1is that for any two

i
on the ring the total traffic
'

(R, . ) and destined
172

distinct pnints ‘1"2
input that orliginates in R:
1772
for x 1is
by

-/l;’ rie)de (f" 1(rydr) .
tet Y1772

we tow frtroduce notlonz of length ani distance
alung the 1:n3. These notions will be considered in
toth e clockwise and counterclockwise directions
which are also the neqgative and positive directions on
{0,1}. By a leny*h functioh we pean a function which
assigns ta each joint t€[0,1] two positive numbers &* (t)
and & (t), the first associated with the positive
direction and the second associated with the negative
directi~a. Thus a length function can be identified

with the corresgponding pair (6.,6-).

In what follows attention will be restricted to
lenath fuctinns 8 = (§%,87) for which §* and &6~ are
pioce<ise continu,us on {0,1). Given such a length
furcticn we Zet.re the distance Ad t .tz) of any two

}
points ’1,? EREYEE I \l Y t, in the positive direct.on
Ly . ’
*
& FRATELPU AL A 6 (t)de. 3)
[ at "
172

carLlarly tre distanc e . t and t
irLlarly ot Istance '6 (tl tz) of L 2 in the

re;tive ditesrion ls defired by

Lttt e /: AN CI O 14)

CHIABE -0/ 70 /0an0-0127079.7% 70973 Thvd

1

oo WY

[

A e

ey




Given a length function (8%, 871, it is clear that
there exists for every i a point z‘elo,u such that
z; 4 x and

Aé—(z‘,x‘) - AG”‘L"].)' {5

The polnt z, is unique except in the singular case
where z, - 0 and L 1 both satisfy (S5). Define

¥i = f at, {«1,...,n. {6)
®

X .z
Note that A is the counterclockwlse Euclidean

distance between xy and zt along the ring. Clearly we

have O<y‘<1 for all i. The vector Y = (yl""'yN)

defined by (5) and (6) is referred to as the shortest
path routing generated by (6%, 87). It is easy to
verify that Y has the property

< < ... < .
HnrTH XY et ¥y

More generally by a routing we mean an element

of IO,UN {the Cartesian product of N copies of (0,1)).
Given a routing ¥ = (yl,-..,yN) consider for each

for which y1 ¥ 1 the point zi on the ring given by
<
xi’yl if x‘t’yi_l

110yi-1 it x‘0y1>1

Define for each i = 1,.,..,N and te{0,1) the flow
f:(Y.t) at t in the positive direction for destination

i by

[+] it y‘-l, or yiﬂl
+
. and te&z x
f!“"” - 174 @)
+
ot xl(ﬂd'r it y‘#l and ten‘;'“i
l*,t

Similarly define the flow !;(Y.:) at t in the negative
direction for destination i by

iy, y1and :en,"x‘

B —, O

~ T (T)dT (f y, ¥l and ter,

- Z, X
ti(v.t) - ﬁ't 1’7

/- r,(t)ar it y, = 1. 9)
nyt i 1

Define also the total flows in the positive and nega-
tive direction at te(0,1] by

N

ey = Lty (10
o1 4

- " -

£ - 1oy 1)
=1

Notice that for fixed ¥ = (yl,...,yN) the functions
f’(Y.') and £7(Y,¢) can be discontinuous only at the

128

destination points x,,...,x . For every fixed t,£%¢,¢)
and f-(',t) are continuous on (0,1)“. Furthermore it

<an be seea that for all 1 and ve(o, 3™

+*
o ¢ t;
. TGN teR, y =
1°71
aTwy.e) L
3y, (12)
1 <+
0 i1 ey
2‘,
0 iz m; x
- 107
'H .
a;‘l t) - (13
i tys
'1(‘1) it ‘ek;x"x’

where z; is defined in texms of Y, via (7).

Sinilarly as in (1], we are given & continuously
differentiable, monotonically increasing scalar
functica ¢ of flow such that A(f}>0 for all £>0.

(For si—plicity we exclude the possibility 4(0) = 0.
It was stown in {1) that unstable algorithaic behavior
results in the single destination case if 4(0) = 0).
Given a routing ¥ we define the length tunction

(6;. 6;) corresponding to Y by

sy = ate’ (v, vte[o0.1] . ae)

8 (x) = are (x,1, veelo,1} . as)

we derote by glY) = t"l(""“'qu“” the shortest
path routing generated by (6;.6;)\1-,11*0 interested in
the algorithm

Rad
Yy =90V 16)
where ‘lo is a given initial zonlu.n.g.
L]
%We say that Y is an equilibrium routing if
* Ll
Y s=g(y) .
Since g(Y) belongs to (0.1)' for every routing ¥,
it follows that an equilibrium Y* must belong to

(0,1)“. Se have the following proposition regarding
existence, uniqueness, and optimality of an
equilidriun. The proof is quite lengthy and has been
relegated to Appendix A.

Proposition 1: There exists & unique equilibrium
routin; Y°. Furthermore Y* minimizes over all
ve(o,l)“ the expression
1 1
I -L plet(v,t)1ae ’]o ple™(r,t)1de

where p §is any function satisfying for all f

We have assumed earlier that 4(0)>0. 1If this
assusption is replaced by d4(0)>0 then Proposition 1
can still be shown to hold except for the uniqueness
fgart. Txistence of an equilibrium can be shown by
using Faxutani's fixed point theorem ([{2), p. 67) in




place of Brower's thecrem in the proof of Apper’.. 7.
The proof of the optimality property of an equili! rium
given in Appendix A is also valid under the assur;tion
d(0) > o.

We now evaluate the Jacobian matrix

391(71) 391(\() -1
-—'s"y*l—— L ..3Y—N‘—
2qly) . .
EX3 . .
39“(¥)- GgN(v)
Layl ayN i

Ffor any routing ve(a,l)“ Qefine ai(‘!), i=1,...,N, by
the eguation [cf. (7)).

+9, (N L x4 (V)]

51”’ -
- >
x{qi(Y) 1 if xi“;i“) 1

The equation defining qi(‘!) is (cf. (3} ~ (5), (14),
(15))

f_ a1t (Y,t))de = [R:

%‘(Y),xi 93 exg

d[f‘(v,t)ldt.

Differentiation of this equation with respect to yj
yields similarly as in [1) the following formula

4]
,(-j)E LU‘_'L.Q].' e .]’ _.L!:!L_ll ‘,J
(0 00" Y @)
..2_... 15 _H 4, '
1. L l iy

1] ot l!.-.muom l',ll(‘)ll

s)

where 2, and 1, are given by (7). At an equilibiruam

L ] ‘e
Y = (yl..--, N, we have

R R i W i
B, (V) 8y M

.ll l|." _l'-
3 "re’ .-‘yl I MR ’ Y]
(19}
where for all §
* »
. x 4y, it x‘wl;,l
| I
s : ¢ " 20
- »
x )(x 1 i x10y }

Let & lr‘J D pe tie uAd\‘uu‘.. matrices having r (: ) oanl
et u » aqe’ o’ .z )

diajnnal olements Let alm 0 be the syrmetric H x M
ratrix having elements

-1
respectively as ith

M wepta,, .

"’
L- . ..-' -‘.-‘ oy G

e |
st
5 J

Then we can write the Jacobian (17) evaluated at Y as

"'i(—» - tOR, (22)

¥We now establish that the matrix © is negative semi~
definite. Por any set S denoted by Xs the characteris~

tic function of S, i.e. X (t) = } if tes, and X g{t)=o

s
if tf5. It can be seen that ~@ is the sum of tuo
positive semilerinite matrices. The first matrix is
the CGran oatrix ©f the functions

- e
X {t) id,'f._ S!_.Lt_)_’.. i=1,...,%
oo 3t
zi”\

in Lzlo,ll (3], p. 56), and the second matrix is the
Gram matrix of the functions

aaret v, el]

X o (t) 3t °

LI
Since every Gram matrix is positive semidefinite it
follows that 9 is negative senidefinite. Now the

3y
3t

i=l,...,N

= DOR ara the saomt as the

eigenvalues of the matrix Dllznllzenx/zom which is

a negative semidefinite matrix. It follows that all

of 39——-—— are real and nonposi-

eigenvalues of

elgenvalues )1, . ,X

tive. It 1s also possible to show that ig%"——)—m

set of eiganvectors that form a basis for R", f.e. it
1s ¢iagonalizable. Llet y be the spectral radius of

*
gy
Y . d.€,

}
u-wmll,....!xnl) . an

Similarly as in (1], we say that an equilibrium ¥
is locally stablm if there exists -a neighhorhood N of
¥* such tha: if Y €Y then the sequence (Y } qmnud
by the algorithm (16) remains in N and converges to ‘l .
Using Ostrowski’s theorem ({2), p. 300~301) and the

T-(y* »
fact that J%—L— has real eigenvalues and is diagonal-

izable we zan prove the tollovinq prupasition

.u

Propositiza 2: Ao equilibrium Y - (yl.....y ) is
locaily stadble if

<l (24)
where y u defined by (23). Purthermore if (v Yorx
and Y, 41" for all k there exists a nom || || oo @

such that
»
Py -r 1
tta sup ~———p— <
ke He, = v 1l

Sim{lar! as irn (1], let us write

Alfry w n + A(f)

whare = = d{0) represents bia-. It follows from the
precr:.-: aalysis that a sufficiently high level of
bi1as wi.i ~'o-uje 8 locally stadble equilibrium and an
ariune - s.milar to the one of (1] shows that for
suff,-,~ 2y high level of bias the algorithm will con-
ver ;. t~ an epiiiibrium for every initial routing | #

et o oaegy < me s ez

RR I




vhen there is a single destination (N=1) we have

2-(‘{.,2;) a t’(Y..z;) = 0 and the denominator in (19)
equals 2a. When there are more than one destinations
we will usually have f..(‘l',z;) # 0 and f’(Y.,z;) A0

and the denominator in (19) can be significantly
larger than 2a . Thus it is possible to have a stable
equilibrium even if G is very small while this is not
possible when there is a single destination. Based on
this fact one is tempted to conclude that the presence
of more than one destination tends to have a bhenefi-
cial effect on the dynamic behavior of the algorithm.
This conjecture is supported by the results of compu-
tational experiments, but we have been unable to
formulate it and establish it mathematically.

As in (1), it is possible to define and analyze
an algorithm where the bias a depends on the current
routing Yk' Similar results as those of {1] can be

obtained, so we ormit the details.

Basing the Routing Decision on More than one Past
Routings

It was seen in [1] that the dynamic behavior of
the algorithm for the single destination case can be
improved by employing some form of averaging of the
sffects of several past routings. This analysis and
the corresponding conclusions can be generalized to
the multiple destination case.

As an example consider the case whare the length
function (487, 6;) used in generating Yk+l depends on

all previous routings Yk, Yk_l....,via a fading
memory scheme of the form

8,(8) = 88, (t) + (1-B)ALE (¥, ,8)), Vte(o,1]

+ - +
5k(t) - BGk__l(t) + (1-g)alr (¥, .t)), veelo,1}

where 8€(0,1) is the decay factor. Then the linearized
system corresponding to an equilibrium Y* is given
by {cf.{1])

L]
Y -(I-B)gg-;y—) l¥k+a¥k_148 +...) .

2
Yy-2

z -!,_osvk,o...

Then we have for asll k

L] »
. 1-g391Y ) _ayd9.Y )
Y,y = -8~ - s

k k

2 " Yyt By

This system is stable if all eigenvalues of the
matrix

* Ld
g, 3g(¥) gy 394Y)
I 8(1-8) o

1 3

where I is the NxN identity matrix, lie within the
unit circle. Since this matrix has rank N it has N
eigenvalues equal to zero. Its remaining N eigen-

values can be shown to equal the eigenvalues of the

-
matrix BX + (1-8) 1’% which are B’(l-B)l‘.
1t = 1,...,N whera X‘ is the ith eigenvalue of

130

ag.({¥*})

. It follows from the fact ALSO and (23) that

Y
the lirearized system is stable if
1 +8
B< 3T 8

By cozparing this ineq:ality with (24) we see that the
fading zenory scheme improves significantly the
convergence properties of the algorithm. The value of
8 for which an optimal rate of convergence is obtained
is the one that minimizes max e + a-p\ .

Sinmilariy une can obtain extcnsions of other results
obtained in [1] in connection with averaging
algoritias for the single destination case.

3. Conzutational Results

We excerimented with a 30-node ring network and
consilered a synchronous and an asynchronous algorithm
with evenly spaced delay broadcasts. A fading memory
scheme was used to average delays corresponding to
the presaat and past routings. In this scheme "delays”
are cosputed at each iteration by means of the formula

{New Delay of Link (i,)] =
=08 [01d Delay of Link (i,2)] +

+ (1-8)(0.05) }(Current flow of (1,214
(25)

The scalar 8 is referred to as the decay factor and
takes values in the interval (0,1). Llarge values of
8 imgly a greater degzee of averaging with delays
corresporiding to past routings. The length of link
(1,2) used in the shortest path t;oupuution was taken
to be

[Length of Link (1,R)] = Bias + [New Delay Link (i,%)]

The bias depends on the current routing (c.f. (1]
and was taken to be ~—

Bias = 0.02 x (Sum of most recently’ "reported dslays”
over all links).

In the synchronous algoritha %111 nodes "report®
their link delays simultaneously at each iteration
and all of these delays are used in the shortest path
computation that determines the new routing.

In the asynchronous algorithm nodes compute their
delays a% every iteration by using equation (25).
However they "report” their link delays only every
30th iteration, with node 1 reporting at the lst
iteration, node 2 at the 2nd iteration and so on. Thus
for exasple at the 3lst iteration node 1 will report
his 1ink delays and the new routing will be computed
on the basis of the delays reported by node 2 at the
2nd iteration, by node 3 at the third iteration, and
50 on. This procedure is patterned after the asyn~
chroncus operation of the algorithm in the ARPANET.

The traffic inputs for destination 30 are given at
the bottoo of tables 1-3. The traffic sent by every
node to eazh of the other destinations 1,2,...,29 vas
taken to e the same and equal to A. We consider two
values A = 0.05 and A = 1. In all runs the initial
rout1rg for destination i was taken to be (i + 15)
(~odulo 13). We show in tables 1 - 3 the generated
sequences of successive routings for destination 30,
(1.e. the siquences of the numerically largest node
roating cessages to destination 30 in the clockwise
dirnctioa). The sequences of routings for the other
destinations are not shown. They exhibited very
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similar behavior. An entry a/b for the a3yn. ronous
algorithm means that during a 30-iteration cycle the
zinimup and maximum routirgs are a and b. Tre resulis
indicate that all the conclusions reached regarding
the effects of bias and averaging are valid for finite

noce natworks. Furtheroore, as the level of A of ¢
fnput to the destinations I through 29 is lncreaseé?g °

the cortribution of all destinations to the total traf-

fic is pore nearly equal, the dynamic behavior of the
algoritims is inproved.
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Appendix A: Proof of Proposition 1

The function g: [0,1.]N > (0,1.1N 1s clearly continuous
8o by Brower's fixed theorem ([2], p. 161) it has a
fixed point Y* which is an equilibrium.

L]
In order to show that ¥ 4is unique and minimizes
over all ve(o,1)M

1 -
3w -j; plet (v, e)lae + [, p1e cx.enlee (A-1)
we consider an associated convex programming problem.

Let L2(0.1] be the space of (equivalent classes of)
square integrable function on [0,1] with nomm

1 2...1/2
£]|= f{t dte) .
Hell= (f) teeen

The Cartesian product L: of n coples of 1'2 (0,1}, where

n is any positive integer, will have the norm

n
HHegyeeeert )] = (151] e, (o1a0*?

¥ith this nomm L'z‘(o.n is a Hilbert space with inner

roduct
2 nfl

<(!1'-‘o;fn)a (911--009")> - 1510 !l(t)ql(t)dh

for all (£,,....2,)€ L3(0,1),(g . .. g JeL}0,1). Any
element (ql,...,gn)en‘;lo,l) defines a bounded linear
functional on L;(O,ll by means of the preceding equa-
tion, and all bounded linear functionals on L:(O,ll
can be defined this way.

We consider the following convex programming

:"’z(o,u which falls within the frama-

work given in Luenberger ((3}, Chapter 8)

problem in L

132

X 1
nininiza fop[t‘(cnaz *Io plf () )de

subject to I fl, zi(t)u:('l')dr -t =0
i‘
a.a. tefo,l1],

N f - -
I - zi(t)ui(t)dt - £ (t) =0,
&.a. te{0,1] ,

+ - + -
0 < ui(e), OSu (E), wu le) +uj(u)=l,
a.a. te[o,l),

+ - 4+ -
t, £, . Uy ex.zlo,ll, L-l.....xb.z)

where a.a.t€[0,1) means for alpost all tef0,1] with
respect to Lebesg m e.

To each routing Y = (y’_.....yu) with correspond-
ing vector 2 = (zl....,zn) defined by (7) we can

associate the following feasible solution of problem
(R.2)

£y =t Ly, £ = gt .3
0 tr  epr’ .
8‘,1’. ~
u () = ‘
1 if  een
xi"’.
o if R:TJ
- [
us(t) - o
) § it teRz
. 1%

(A.8)

The corresponding value of the objective of problem
(A.2) s J(Y). The fact that an equilibrium routing
minimizes J(Y) follows from the following lemma:

»
Lenca A.1: Xf Y 1s an equilibrium routing thes the

LY L N L] -
functions £ ', £ , u ’, u. » 4 = 2,...,N correspond~

ing to Y* via equations (A.3) and (A.4) are an optimal
solution of problem (A.2).

Proof: Consider the functions alf*(x’,+)),
au‘(v'.-nenzto.u. By the sufficlency theorem of
(3}, P. 220 the result will follow if we show that
e, e, u:', u:- are an optimal solution to the
problen




1 ., -
nlnimlzojo {p!t (€)) + plf (£)}

N

*

+ dll’(Y L)L T IR* :‘(t)uI(‘r)d‘r -£+(t)l
i=1 "x ,t

'Y

S e
sar ot oL S o mar-e e
1=1 X0t

subject to Ocuy(t), O (t), ui(e) + u () = 1,
a.a.te(o,1l), 4 = 1,...,N .
(A.5)
Define

D, (t) = f;+ ate* iy’ nlar
1 toxy

- - "
D, (t) = f,— are (¥ ,miar .
1 t.xl

A straightforward calculation using integration by
parts shows that problem (A.S5) can be written as

muu.fo‘{pu’(en + pLE (V)]

-art ot et - a0

N
+ I 0 (o, )40 ()2 mu'(m}dt
fwl x‘ i 1 Xy i i

subject to Ojlz(t), Of_u:(t), u;(t) + u;(t) =1,
a.a.telo0,1), i=1,...,N

Usino the fact that -:% = d, it 18 easy to sas rhat
L - L -

4 *. | 2 u; . u; , L=1,.,.,N are an optimal
solution to this problem. Q.E.D.

It remains to show uniqueness of the equilibrium.
Since 4(f) > 0 for all £, all 4 is monotonically
increasing, the function p is -cricuy convex. lat ¥
be the convex set of ul(!’,!')ex.z(o,ll for which

there exist l’. !-, uI. u; {iw1}1,...,N which are

feasible for problem (A.2). Problem (A.2) can be
written as

1 -
mininize) (o1£* (t)] + plE (1)) )ae (A.6)

subject to (!’,!‘)er.
-

12 Yl

and !; are two equilibria, then

g, g, andtet g, 0 £, 0

are both optimal solutions of problem {A.6). Using the

strict convexity of p, it follows that except for t
in a set having Lebesgue measure zero

PO - ey’ - BRI
£ "1"’ t (Yzll); 4 (Yl.t) 4 (Yz,t).

(L9 )]

&> * ' » - L[] - L
since £ "l")’ 4 (er'), [ 4 "1"" [ 4 (Yz.'l are
continuous everywhere except at '1""'51' it follows

that (x.7) holds for all tefo,l]. ‘rhh.togos.hnr with
the ass.=ption 4(0) > O inmplies that '1 - !2. Q.E.D.
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